Some Characteristics of the Referential and Inferential Predication in Classical Logic
DOI:
https://doi.org/10.54889/issn.2744-208X.2021.1.1.1Keywords:
logic, calculus, syllogistics, symbolic logic, reference, inferenceAbstract
In the article we consider the relationship of traditional provisions of basic logical concepts and confront them with new and modern approaches to the same concepts. Logic is characterized in different ways when it is associated with syllogistics (referential – semantical model of logic) or with symbolic logic (inferential – syntactical model of logic). This is not only a difference in the logical calculation of (1) concepts, (2) statements, and (3) predicates, but this difference also appears in the treatment of the calculative abilities of logical forms, the ontological-referential
status of conceptual content and the inferential-categorical status of logical forms. The basic markers or basic ideas that separate ontologically oriented logic from categorically oriented logic are the (1) concept of truth, the (2) concept of meaning, the (3) concept of identity, and the (4) concept of predication. Here, this differences are explicitly demonstrated by the introduction of differential terminology. From this differential methodology follows a new set of characterizations of logic.
Downloads
References
Aristoteles' Metapysik I-II (1978). In griechiesch-deutsch. In ubersetzung von Herman Bonitz. Neu bearbeitete mit Einleitung und Komentar von Horst Sedel. Velix Meiner Verlag, Leipzig.
Aristotle Posterior Analytics. (1997) by Loeb Classical Library.Harvard University Press
Aristotle (1987, 1990). ''Categories'', In Ackrill, J.L. (ed.) A new Aristotle Reader . Oxford: Clarendon Press, pp.5-11.
Bäck, Allan T. (2000). Aristotle's Theory of Predication (Philosophia Antiqua). Brill Academic Publishers. DOI: https://doi.org/10.1163/9789004321090
Boole, G. (1848 ). The Mathematical Analysis of Logic, being an essay towards a calculus of deductive reasoning. New York: Philosophical Library.
Boole, G. (1854 ). An Investigation of the Laws of Thouths, on which are founded the mathematical theories of logic and probabilities. New York: New York: Philosophical Library. DOI: https://doi.org/10.5962/bhl.title.29413
Carnap, R. (1937). The Logical Syntax of Language. New York: Harcourt, Brace,
Carnap, R. (1958). Introduction to Symbolic Logic and its Applications. Dover Publications.
Carnap, R. (1948). Introduction to Semantics. Cambridge, Massachusetts: Harvard University Press.
Dewey, J. (1938). Logic – The Theory of Inquiry. New York: Henry Holt and Company.
Frege, G. (1964). Begriffsschrift und andere Aufsatze. Hildesheim: Olms.
Frege, G. (1967). '' Über die Begriffsschrift des Herrn Peano und meine Eigene '', In G. Frege, G.
Frege, G. (1969). ''Booles rechnende Logic und meine Begriffsschrift.'' ln Frege, G. Nachgelassene Schriften. Hamburg: Felix Meiner Verlag.
Frege, G. (auth.), Patzig, G. (ed.) (2008). Funktion, Begriff, Bedeutung. Fünf logische Studien. Herausgegeben und eingeleitet von Günther Patzig. Vandenhoeck & Ruprecht.
Frege. G. (1964). '' Uber der Zweck der Begriffsschrift.'' In: Begriffsscrift und andere Aufsatze. Hildesheim: Olms.
Hilbert, D.(1930). The Principles of Mathematical Logic. New York: Chelsea Publishing Company.
Hilbert, D. ''Axiomatische Denken'', In Hilbert (1935, 1970). Gesammelte Abhandlungen. Dritter Band: Analysis. Grundlagen der Mathematik. Physik. Verschiedenes. Berlin: Springer Verlag, pp.146-156. DOI: https://doi.org/10.1007/978-3-662-38452-7_10
Ibrulj, N. (1999). Filozofija logike. Sarajevo: Sarajevo Publisching.
Ibrulj, N. (2005). Stoljeće rearanžiranja. Sarajevo: FDT.
Jeffrey, R. C. Burgess, J. P. (2006). Formal Logic. Its Scope and Limits.Hackett Publishing Company, Inc.
Kant, I. (1976). Kritik der reinen Vernunf. Hamaburg: Velix Meiner Verlag.
Kripke. S. (1972, 2001). Naming and Necessity.Cambridge, Harvard: Harvard University Press. DOI: https://doi.org/10.1007/978-94-010-2557-7_9
Łukasiewicz, J. (1957). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Oxford: Oxford University Press.
Łukasiewicz, J. (1963). Elements of Mathematical Logic.Pergamon Press.
Quine, W.V.O. (1970, 1986). Philosophy of Logic. New York: Prentice-Hall.
Rieger, B. B. (1999): Semiotics and Computational Lingustics. On Semiotic Cognitive Information Processing. In: Zadeh, Lotfi A. / Kacprzyk, Janusz (eds.): Computing with Words in Information / Intelligent Systems I. Foundations [Studies in Fuzziness and Soft Computing 33], Heidelberg, (Physics Verlag), pp.93-118. Dostopno na: http://www.ldv.uni-trier.de. DOI: https://doi.org/10.1007/978-3-7908-1873-4_5
Russell, B. (1996). Principles of Mathematics. W. W. Norton & Company. Scholz, H. (1961). Concise History of Logic. Wisdom Library. New York (Translated from the Geman: Abriss der Geschichte der Logik).
Wittgenstein, L. (2009). Philosophical Investigations (en face German-English edition). Wiley- Blackwell Publishers.
Zadeh, L.A. (1987). From Computing with Numbers to Computing with Words. From Manipulations of Measurements to Manipulation of Perception. https://www.researchgate.net/publication/227112735
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 THE LOGICAL FORESIGHT - Journal for Logic and Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.